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| | MetHyInfra
Motivation

Hydrogen at high pressures
« promising energy carrier for use in climate-neutral
applications in industry and transport I
* needs to be stored at high pressures (up to 1000 bar) H . (“ ™
due to its low volumetric energy density C 2 ): /‘ —

» to monitor hydrogen consumption, a verifiable flow
measurement is required

Critical flow Venturi nozzles (CFVNS) -

Mach number
00 02 04 0608 1 12 14 1.6 1820
e

 state-of-the-art secondary standard gas flow meter

» gas accelerates to Ma = 1 (critical flow)

 international standards are limited to air and natural
gases up to 200 bar

» Flow simulation of hydrogen at high pressures
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CFD for high-pressure hydrogen flows

Mach number

Aim:
Better understanding of the physics of
high-pressure hydrogen flows inside the nozzle

Need:

CFD model that takes the most relevant real gas effects into account,
modeling of non-ideal, rough, and non-adiabatic walls

non-ideal nozzle contour

Po» To, Po R ———
real gas effects B
/ , heat transfer
+ Q

p
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— MetHylnfra
Challenges

For a better understanding of the flow physics:

develop a CFD model that includes real gas effects,

wall roughness, and heat transfer transform data
generated by dimensional

o0 02 ol'S5" e 1 1o characterization
Into parameters
of a CFD-applicable
computer model
of the physical process

Towards a “dry” calibration:

For identifying the most significant parameters
Influencing the flow through critical nozzles:

perform efficient parameter studies
based on a validated CFD model
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Approach

Start with simple model and extend it step by step:
« Choice of appropriate solver

« Choice of appropriate turbulence model

* Inclusion of real gas effects

« Consideration of non-ideal shapes and rough walls

« Consideration of non-adiabatic walls

Start with studying the influence of different parameters / effects
systematically before considering specific nozzles / setups
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MetHyInfra
Approach

Real gas
B Surrogate
T model
1. StUdy the influence of / \ 2. Mode"ng Specific
different parameters nozzles / settings
systematically (e.g., from the MetHylnfra
/ l W 3. Substitute CFD model PEER)
' Rough by cheaper surrogate / \
CIEIEE O Parametrized alls model
turbulence shape W Dimensional charac- Operating
model (toroidal — Heated l terization of nozzles conditions
cvlindrical walls — real shape
i ) — allows to study systematic Boundary
) . — roughness level conditions
Tkt i influence of various parameter
Validation with existing data T on wall
(e.g., from the literature)
or with experiments designed — basis for the “dry” calibration Validation with
for this purpose of nozzles corresponding experiments

CFD Workshop - Part 2, 15 June 2023, Boras, SWE 6 EMPIR 20IND11



| | | | EMetHyInfra
Realization in MetHyInfra project

CFD work summarized in one work package
« Title: “Development of a CFD model for high pressure hydrogen flows”

 Partners involved: PTB, ESI
 Work divided into 4 tasks

Task 3:
CFD model for
high pressure
hydrogen flows
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Interaction with other parts of the project

METAS:

Dimensional
characterization
of nozzles

\ NEL, Cesame, JV,
real shape METAS, MH, UL: ‘_

+ known roughness Experiment _
Comparison

\ ESI, PTB: —=| Validation

Parametrized mesh N PTB, ESI: ) | <5, sim

CFD model

CFD Workshop - Part 2, 15 June 2023, Boras, SWE 8 EMPIR 20IND11



Interaction with other parts of the project

— MetHylnfra

RUB:

Derivation of new EoS
for high-pressure hydrogen
(needed for calculation of
critical flow factor)

I

PTB, ESI:

Implementation
of EoS
in CFD model
(OpenFOAM)

)

NEL, Cesame,
JV, METAS,
MH, UL:

Experiment

More
exact
results
for

CD, sim

More
exact
results
for

CD, exp

Comparison
Validation
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Realization in MetHyInfra project

Development of a CFD model for high pressure hydrogen flows

Task 3:
CFD model for
high-pressure
hydrogen flows

Experiments with heated walls
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Results

Come back to CFVN (critical flow Venturi nozzle)
and consider different effects
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Compressibility effects

T
\ Compressibility effects
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Compressibility effects

MetHylInfra

Compressible fluid

Py

° o Acompr. = \ KRy T (ldeal gas)

s % |p7 » Fluid properties change after
°~ s arrival of sound wave

aincompr. — 0

» Fluid properties change
instantaneously

Speed of sound

» Propagation velocity of small
pressure disturbances in a medium
u=odu a u=20
O p=po+0p S P = Po
p=po+dp P = Po
Piston moves Wave moves away from
at velocity du piston at velocity a

From conservation law of mass and
momentum, the speed of sound can be
derived as

(%)
a= ||=—
dp .
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Compressibility effects

Mach number
» Ratio of flow velocity to local speed of sound

« What happens when flow reaches M = 1?

u
M =—
a
« Typically, flows are considered compressible @ @
when Mach number exceeds 0.3
1.00 1
p k—1 K-1
095 =777 , o= 1+—— M? M=0 M<1 M=1
H t
0.90 | E
EO.BS i
5 oao | « Waves in front of object get compressed
5 ; * In flows, where M = 1, small disturbances can’t
7 i propagate upstream
0.70 5 * In the context of critical nozzles:
0.65 - » Flow rate only depends on upstream
00 01 02 03 04 05 06 07 08 09 L0 conditions

Mach number M

» At M = 0.3, change in density is ca. 5% and can’t be
neglected
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Compressibility effects

« A compressible flow solver is used for the critical nozzle flow
» here: sonicFOAM

« Let's have a look at the flow field ——
' layer
. . .. V
Mach number white lines indicate Oblique ~ Re;rllicglfd‘ :
00 02 04 06 08 10 12 14 16 18 20 critical condition shock (_Expansmn

waves
0

Slip
line

Mach )
disc

L
\

Computational Schlieren

1000. 5000 10000 15000 20000 25000 30000.

" L eeee— Re = 1.3 - 10°

» Critical flow (Ma = 1) is reached in nozzle throat
(see white line)
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Boundary layer effects

Boundary layer effects

Compressibility effects
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Boundary layer effects

Boundary layer (BL) Reynolds number
» thin region close to wall, where viscous » Ratio of inertial to viscous forces
effects on velocity profile are significant pud
| . Re = —
Viscous flow Inviscid flow U
s e “iids Displacement
B X | | thickness 4 .
"\ equal Laminar BL Turbulent BL
) area > - : .
2 , * Smooth, rectified flow « Chauotic, swirling flow
« Occurs at lower Re values « Occurs at higher Re values
» Viscous forces dominate » Inertial forces dominate

Displacement thickness
> reduces effective cross-sectional area

 |n CFD, RANS turbulence models with wall functions

2 are used
1— 2_51 » How is turbulence actually modeled?
d » And what are wall functions for?
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Turbulence modeling (1)

Navier Stokes equations (incompressible, easier to explain):

d(pu;) 0 _dp 0 du; 0u;

o 9x; (puiy) = - ox; + 0x; H ox; t ox; Reynolds decomposition
Reynolds-averaged Navier Stokes (RANS) equations: u(x, t) = u(x) + u'(x, t)
0(on) 0 s g v om p(x,t) =p(x) +p'(x,t)

pPUi _—y_ _9p u; oy —7 / ~\

ot + dx: (puiuj) T dx + Ox: [,u ((?x- + axi> B puiuj] Mean Fluctuating

J J J Component Component

The Reynolds-averaging process results in an additional stress term:
—pU{U;

In order to solve the RANS equations, we need to express the Reynolds stress in terms of the
mean flow quantities

» This is the turbulence closure problem
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Turbulence modeling (2)

« Consider a simple turbulent shear flow in 2D (like close to the wall of the nozzle):
y A

ou! ot
—
ay b 3 ° Tt
y Mean flow Eddy

» The fluid element is sheared by the mean flow and by the eddy

Shear stress from mean flow (viscous shear): Shear stress from eddies / turbulence
01 IS given by Reynolds stress:
T=U—
# dy T = —pu'v’

Eddy viscosity model (or Boussinesq's hypothesis:)

EE General form
—pu'v' = pp— with eddy / turbulent viscosity U L LA A,

ay —pulfu]f = U (—l + —]> — = kd;;

ax]' axi 3

> Ut needs to be modeled in turbulence model 1, is considered isotropic
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Turbulence modeling (3)

— MetHylnfra

k-w Shear Stress Transport (SST) model Results
« In order to determine eddy viscosity, two additional transport Cylindrical nozzle (d = 1 mm, air flow)
equations are solved: 0.995
« Turbulence kinetic energy k —_— i
. . . . . T O
« Turbulence specific dissipation rate w i’ 5
« Combines strenghts of k-w model (inner region of boundary § 0.985
layer) and k-& model (free stream) § —
g
_ S 0.975
Automatic wall treatment o
-(CS 0.970 1 o k-w SST model
* Depending on y+ value (dimensionless wall distance): A (Standard model)
0.965 A < PTB (air, rough)
° & PTB (air)
Piecewise-linear Non-linear S #  LNE (air)
10° 106 107
Reynolds number Re
OR : .
« Performs well for high Re numbers (turbulent region)
* Underperforms for low Re numbers (laminar region)
» Better predictive model required
Resolved Wall function
CFD Workshop - Part 2, 15 June 2023, Boras, SWE 20
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Transitional effects

Boundary layer effects Transitional effects
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Transitional effects

« Transition describes the process of a laminar Cylindrical nozzle (d = 1 mm, air flow)
boundary layer becoming turbulent -
* |t occurs in a specific Reynolds number Re range 0.990 - ”4,%‘%’% o
- : 6 ° fo)
(typically at Re = 10° for CFVNSs) S 0.985 %}W X
% ) o
S 0.980 A o
G q o
o
o 0.975 1 I
2
Cp £0.970 -
-‘é’ o Standard model
0.965 A < PTB (air, rough)
o &  PTB (air)
0.960 - #  LNE (air)
10° 106 107
« In CFD, transitional turbulence model uses trigger Reynglds number Re
arameter y to model transition process, where : :
P _ 4 , P O Standard model in good accordance with
o y=(0forlaminar flow experimental data for higher Re
o y =1 for turbulent flow P N _ 9 _
o 0<y<1fortransitional flow < Transitional model in good agreement in
entire Re range
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Displacement thickness

Definition
5 j‘smax (1 pU ) d
= TN |4y
. . ! 0 (PU) max .
Laminarregion Turbulent region
Con- Cylin-
2.2 vergent | drical
Re 0.024 Re
2.0 - 104 yid | — 1 3-106
2.6-10 0.022 1.3-10
1.8 -1.3-10° —2.6-108
~2.6-105 ; o 0.020 —5.2-106
@ 1.6 — 52105 — Cylindrical Nozzle 2 0.018 —1.3-107
= . 5 o
= 14 7.8-10 . o, || lilhlly < 0.016
2 " 6 6 6 RS
S 1.2 Eé‘o.gss- ° w‘-ﬁﬂ‘ﬂ) & 0.014
1.0 4 %0980- mEa > 0.012
o /,
= 7
0.8 & 0975 0.010
i CFD mOdeI % ¢ Transitional model — CFD model
0.6 --1D theory* . 0.970 o Standard model 0.008 --1D theory*
: : : ! < PTB (air, rough) } ! ! ! :
00 02 04 06 08 1.0 v9teg 4 00 02 04 06 08 10
Normalized axial position z/d 0.960 1@ | | ; Normalized axial position z/d
10° 106 107
Reynolds number Re
_ 1 * Based on integral methods for solving the o 1
Self-similar for vRe boundary layer equations (by B. Mickan) Self-similar for Re?13°
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Real gas effects

Boundary layer effects Transitional effects

Real gas effects
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Real gas effects

o MetHylnfra

Motivation

What is the difference between a real and an ideal gas?

Ideal gas
Particles have no volume

Collisions are elastic
No interactions between particles

Real gas

Particles have volume
Collisions are non-elastic
Intermolecular forces

needs to be considered

be neglected
» Consideration of appropriate real gas

Real gases behave like ideal gases:

At high temperatures
At low pressures

model in CFD simulation

Ideal gas model

Real gas model
(e. g. Peng-Robinson)

* Nozzle flow for pressures up to 100 MPa

» Real gas effects are relevant and cannot

Equation of State
(EoS)

pVo=R-T

a-a
Pr oy — 52 (m=b)=R-T
C TS

!

allows for
intermolecular forces

allows for effect of
particle volume

» already available in OpenFOAM

EMPIR 20IND11

CFD Workshop - Part 2, 15 June 2023, Boras, SWE

25



Real gas effects

a MetHylInfra

Real gas model

« High deviation in density at high pressures between
o ldeal gas (-) and
o real gas (---)
» Real gas model of Peng & Robinson (-) is available
in OpenFOAM
o However, deviation is still up to 5 % from
REFPROP

» A more precise real gas model for hydrogen is
implemented based on REFPROP data

Density p / kg/m3

(o]
o

~
o
L

(@)]
o
L

Ul
o
L

SN
o
1

Hydrogen

1 T=300K

—— |deal gas
—— Real gas (Peng-Robinson)

--- REFPROP

-
—-
-
-
-
-
-
— -
-
-
-
-
=
-
-
-
-
-
-
-
-
-
C
”
>

0 200 400 600
Pressure p / bar

800

CFD Workshop - Part 2, 15 June 2023, Boras, SWE

26

EMPIR 20IND11



MetHyInfra
Real gas effects

New model
Full temperature range Hydrogen
400
80 T=300K
—— l|deal gas
701 — Real gas (Peng-Robinson)
& 60— Real gas (this work)
< £ -—-- REFPROP
o § g" 50 A
Zcon T =P 340
o : >
() Q =
g 250 o3 S 2 30-
I —U.Us o =)
rva S 20 1
 N@ ed8s
10 A
-0.09 0 1
150 I 1 1 1 1 1
200 400 600 800 1000 0 200 400 600 800 1000
Pressure p / bar Pressure p / bar

> Error is decreased from 5 % (=) to 0.1 % (-)
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Real gas effects

MetHylInfra

Validation

« Validation simulations of hydrogen nozzle flow with
/\ |deal gas model
[1 Real gas model by Peng & Robinson
O Real gas model from this work
« compared with
V'  Experiments by Morioka et al. (2011)

Ideal discharge coefficient C},

Toroidal nozzle (d = 0.6 mm, hydrogen flow)

1.00 o ATAAAS A A Al |
B gy o o T
0.98 1 = ! =
. v VOO o
B\ v
| "
0.96 &
o
v
0.94 1
ISO 9300 o
i v
0.92 1 ISO 9300 (acc. machined) o
A Ideal gas v
o Real gas (Peng-Robinson)
0901 o Real gas (this work)
v Experiment (Morioka) o
0.88 ’ ’ '
104 10° 108 107

Reynolds number Re

» New implemented real gas model is in
good accordance with experimental data
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Non-ideal nozzle contours

Boundary layer effects Transitional effects

Real gas effects

Influence of non-ideal nozzle contour
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Non-ideal nozzle contours

Toroidal nozzle (d =1 mm)

e Start & end point for inlet circle
e Point for outlet slope

Extension
—— Measurement

—==- |deal shape

Geometry creation
* Measured nozzle contour (-)

Is extended (-) with
« Circle at inlet
- Straight line at outlet

Mesh creation ° ' ? ’ o, 0 ° ’ ° ’

* Hexaedral mesh Cylindrical nozzle (d = 1 mm)

« Contour is implemented using B-splines —— e Start & end point for infet circle
=== ldeal shape ° oint for outlet slope

« Mesh can be created for >0 60- T o oy ouietsiop

—— Measurement

o ldeal contours
o Measured contours
o Parameterized contours
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Parametric study

* Non-ideal nozzle shapes often lie between the two

ideal shapes (cylindrical and toroidal) 0.62
, . . e . N - = Meas. contour (Tor.)
> Let’s consider a linear superposition of the ideal types —— Meas. contour (Cyl.)
via a variation parameter a with 607 From MetHylInfra project
o a =0 for cylindrical shape
o a =1 fortoroidal nozzle shape R
o 0 < a<1for parametric shape S5
:: § 056 T
:: -6
W ©
y(@) =1 —a) yey +a - yror 3 0541
Variation parameter a = :~... 5ol
3 0.0(Cyl.) —— 0.6 \
5 —02 = e
03 S —_—
o e | et 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
% — 04 RS LO(Tor) | e Axial direction z/d
5 — 0.5 A et
g A:MM
0.4 T I 1 1 - T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Axial direction z/d
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Parametric study

— MetHylnfra

Results
1.00
a between
0.99 A
Q
Q
=
< 0.98
g » between
3 | a betwee o Meas. contour (Tor.)
; 0.1 and 0.2 x Meas. contour (Cyl.)
(@]
E 0.97 1 Variation parameter a =
2 0.0(Cyl.) —— 0.6
a 0.1 — 0.7
0.96 - — 0.2 — 0.8
— 0.3 — 0.9
— 0.4 — 1.0 (Tor.)
— 0.5
0.95 —_—
10° 10° 107

Reynolds number Re

Radial direction y/d

Nozzle contours

0.62
\ - = Meas. contour (Tor.)
\ —10 - Meas. contour (Cyl.)
0.601 S From MetHyInfra project
0.58 1
a between
0.56
0.0 and 0.2
(excl. throat region)
0.54
a between
0.52 1 0.5 and O
0.50 - y i

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Axial direction z/d

> In a first approximation, allocated a values of nozzle shapes coincide with those of the C, curves
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Wall roughness

Boundary layer effects Transitional effects

Po, To, Po

Real gas effects

Influence of rough walls Influence of non-ideal nozzle contour
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Wall roughness

o MetHylInfra

» Logarithmic law of the wall (smooth walls)
1
ut =—In(Ey™) 30 <yt <200
K

* What happens for rough walls?

Sand grain roughness height

pK.u
@« («-2")

« Sand grains increase wall shear stress
and broaden the flow profile

» Logarithmic law of the wall (rough walls)

1
ut = Eln(EyJ’) — AB

L

U

» AB causes the log-law
curve to shift downwards

Three regions are distinguished

« Hydrodynamically smooth K} <225
« Transitionally rough 225 < K& <90

» Hydrodynamically rough 90 < K

CFD Workshop - Part 2, 15 June 2023, Boras, SWE
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Wall roughness

MetHylInfra

Roughness average Ra

» Arithmetic average of absolute values of
profile heights over evaluation length

z(x)

1 l
Ra =—j |z(x)|dx
LJo

« Correlation between Ra and K, for CFD analysis
(based on literature study)

K. = 5Ra

» Investigation of three different roughness levels:
A R1(Ra=0.05pum)
[J R2 (Ra=0.50 um)
VvV R3 (Ra=1.00 um)

1.000

0.995 1

0.990

O
©
%)
)

Discharge coefficient Cp
o o
[(e] w
~l (o]
w o

0.970 1

0.965 1

0.960

Toroidal nozzle
(d =1.0 mm, hydrogen, ideal gas)

(Preliminary results)

¥,
VIV Vvyvyvy ARA

<4 0O pb

R1 (Ra/d=5-107%)

R2 (Ra/d=5-107%)

R3 (Ra/d=1-1073)

ISO 9300

ISO 9300 (acc. machined)

10°

106

107

Reynolds number Re

» Specific drop in turbulent region
» Transition occurs earlier
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Heat transfer

Boundary layer effects Transitional effects

Do To, Po
. = —_
Yy Q
Real gas effects if Influence of heat transfer
Influence of rough walls Influence of non-ideal nozzle contour
p
p _——
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Heat transfer

— MetHylnfra

Thermal boundary layer (TBL)

» thin region close to wall formed due to
temperature gradient between wall and core flow

T .
o0 Heat convection
?:\\ Q = hA(T, — Tx)
) ::\\
Ql’ ™\ Tw with heat transfer coefficient h
A

» As temperature in-/decreases in TBL, density D
de-/increases which affects mass flow rate ~ RyT

Prandtl number
» Ratio of momentum to thermal diffusivity

pr_ Y _ Hip ok
a kf(cop) Kk

Pr<1 6TBL
Pr=1__ OrpL = Opy
Pr>1 SrBL

For many gases, typically around 0.7
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Thank you!

Boundary layer effects Transitional effects

\ log(Re) Compressibility effects

Po, To, Po

* Q
Real gas effects i Influence of heat transfer

Influence of rough walls Influence of non-ideal nozzle contour
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Next session: Tutorial case

High-pressure hydrogen flow through a cylindrical non-ideal critical nozzle

Inlet:
_ Wall: A-A
Po = 200 bar Outlet: _ o
To = 300K Measured nozzle contour @ =
from project ps = 100 bar
A |
y A
T Z d/2
' \4

A d =1 mm
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