

EMPIR CALL 2020

Metrology infrastructure for high-pressure gas and liquified hydrogen flows

CFD Workshop Part 3: Tutorial case of a critical nozzle "FROM Adjusting the mesh TO visualiZing the flow field"

Sebastian Weiss

Working Groups 8.41 "Modelling and Simulation" and 1.45 "Hydrogen Quantity Metering" Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany

Tutorial case description

High-pressure hydrogen flow through a cylindrical non-ideal critical nozzle

Simulation is conducted with OpenFOAM version: <u>ESI OpenCFD Release OpenFOAM® v2012 (20 12)</u>

Agenda (Part 1)

OpenFOAM folder structure

Pre-processing

1.	Geometry creation
2.	Mesh creation
3.	Numerical setup
	a) Boundary conditions
	b) Turbulence model
	c) Real gas model
	d) Numerical settings

Agenda (Part 1)

OpenFOAM folder structure

CFD Workshop - Part 3, 15 June 2023, Borås, SWE

- Nozzle contour file is created using Python script
- Specific file format required for later use in meshing tool
 - BSz: vector of axial nozzle coordinates
 - BSy: vector of radial nozzle coordinates
 - BSd: index of throat diameter position
- Note: throat diameter is always normalized to 1 in this file
- Functions are available for:
 - 1. Toroidal nozzles (*Tor_ideal*)
 - 2. Cylindrical nozzles (Cyl_ideal)
 - 3. Measured nozzles (Meas_CFVN)
 - 4. Creation of geometry file (create_geometry_file)

> Let's have a look at how to create the geometry file *Meas_Cyl.out* for our tutorial case

Nozzle contour file format (for use in blockMesh)

BSz (
$$z_0 z_1 ... z_{nz-1}$$
);
BSy ($y_0 y_1 ... y_{nz-1}$);
BSd index_d;

Ideal toroidal nozzle: Function: *Tor_ideal(I, al, nz)* Parameters:

- *I* nozzle length (in d)
- **al** diffusor angle (in °)
- *nz* number of points

Ideal cylindrical nozzle: Function: *Cyl_ideal(I, al, nz)* Parameters:

- *I* nozzle length (in d)
- **al** diffusor angle (in °)
- *nz* number of points

MetHvInfra

Recap of the geometry functions

Measured nozzle: Function: Meas_CFVN(meas_data, *NType, I, n_in, n_out)*

Parameters:

file containing measured contour data meas data (list of z and y positions, tab-separated) NType

- n in
- n_out

nozzle type (0 if cylindrical, 1 if toroidal)

- nozzle length (in d)
- point index for inlet circle (in *meas_data*) point index for outlet slope

(counted from last index in *meas_data*)

meas data From CMM measurement: Cyl_D1_meas.txt z -0.9518087 0.614441116 -0.9429014 0.609777601 -0.9339942 0.605116062 -0.9250869 0.600719494 -0.9161797 0.596532892

Recap of the geometry functions

Creation of geometry file:

Function: create_geometry_file(name, BSz, Bsy, BSd) Parameters:

- name of output file (here: *Meas_Cyl.out*) name
- BSz vector of axial nozzle coordinates (already created)
- BSy vector of radial nozzle coordinates (already created)
- index of throat diameter position (already created) BSd

Output file (*Meas_Cyl.out*)

BSz (0.000000 0.008842 0.017 .003115 1.012022 1.020930 1.€ 2.018540 2.027446 2.036354 2. 5 3.028512 3.037358 3.046205 183 4.037030 4.045876 4.05472 328 4.974774 4.983621 4.992468 36701 5.045548 5.054394 5.063 .045219 6.054066 6.062912 6.0 7.053737 7.062584 7.071430 7. 9 8.062255 8.071102 8.079948

BSy (1.304710 1.241684 1.198 .504587 0.504455 0.504787 0.5 0.510218 0.510659 0.511116 0. 7 0.583600 0.584254 0.584907 429 0.658082 0.658736 0.65938 31911 0.732565 0.733218 0.733 .806393 0.807047 0.807700 0.8 0.880876 0.881529 0.882182 0. 5 0.955358 0.956011 0.956665

BSd 201;

3 9.000000); 36056 0.505914 0.505739 0.505 .505329 0.505887 0.506235 0.50 3.578373 0.579027 0.579680 0.5 2 0.652856 0.653509 0.654162 0 584 0.727338 0.727991 0.728645 31167 0.801820 0.802473 0.8031 .875649 0.876302 0.876956 0.87 0.950131 0.950784 0.951438 0.9

3 1.024613);

31857 0.940764 0.949671 0.9585

.947282 1.956189 1.965096 1.97

2.957738 2.966585 2.975432 2.9

3.966256 3.975103 3.983950 3

74446 5.983293 5.992139 6.0009

.982964 6.991811 7.000657 7.00

7.991482 8.000329 8.009175 8.6

Agenda (Part 1)

OpenFOAM folder structure

CFD Workshop - Part 3, 15 June 2023, Borås, SWE

- Mesh is created using **blockMesh** utility in OpenFOAM
- blockMesh generates hexaedral meshes from geometry using block structure
- Mesh information is written in *blockMeshDict* file
- We will create the mesh for the measured cylindrical nozzle geometry with a blockMesh-based nozzle meshing tool
- > But first, let's have a look at a simple example to understand the blockMesh structure

Simple example (blockMeshDict file)

scale: Scaling factor (0.001 scales to mm)

scale 0.001;

vertices: List of vertex coordinates

vertic	es			
	(0.0	0.0	0.0)	//0
	(0.0	0.0	3.0)	//1
	(0.1	0.0	3.0)	//2
	(0.1	0.0	0.0)	//3
	(0.0	0.7	0.0)	//4
	(0.0	0.7	3.0)	//5
	(0.1	0.7	3.0)	//6
	(0.1	0.7	0.0)	//7
);				

blocks: Ordered list of vertex labels and mesh size

edges: Used to define arc or spline edges

edges (
-	arc	4	5	(0.0	0.5	1.5)
	arc	7	6	(0.1	0.5	1.5)
);						

boundary: List of boundary faces and type

boundary (

extrudeMeshDict: Used to create a 5° wedge sector mesh

> Now we create the mesh for our tutorial case using more advanced nozzle meshing tool

2D meshing tool to create an arbitrary nozzle contour

2D meshing tool to create an arbitrary nozzle contour

Agenda (Part 1)

OpenFOAM folder structure

CFD Workshop - Part 3, 15 June 2023, Borås, SWE

> First, let's estimate the throat Reynolds number

CFD Workshop - Part 3, 15 June 2023, Borås, SWE

MetHyInfra

Estimation of throat Reynolds number

- Use definitions from ISO 9300
- For reasons of simplicity, assume ideal gas and isentropic, 1D flow

Throat Reynolds number

$$\rightarrow Re_{nt,th,i} = \frac{4\dot{m}_{th,i}}{\pi d\mu_0}$$

MetHylnfra

Ideal mass flow rate

$$\rightarrow \dot{m}_{th,i} = C_i^* \cdot \frac{\pi}{4} d^2 \cdot \frac{p_0}{\sqrt{\left(\frac{R}{M}\right)T_0}}$$

- We often take this expression for granted
- But how can we actually derive this formulation?

 $\pi d \mu_0$

Mass flow rate $\dot{m}_{th,i} = C_i^* \cdot \frac{p_0}{\sqrt{R_M T_0}} \cdot \frac{\pi}{4} d^2$

How can we derive this equation?

1. Start with simple definition:

 $\dot{m}_{th,i} = \frac{\rho^* u^* A^*}{P}$

- 2. Assume:
 - Ideal gas
 - Reversible process
 - Adiabatic process
 - 1D flow

Critical velocityIsen
(constr
 $c_p T_0 = d$ Critical Mach number $M^* = \frac{u^*}{a^*} = 1$ $u^* = a^* = \sqrt{\kappa R_M T^*}$ $c_p T_0 = d$ Critical temperature
is still unknown $T_0 = T_0$

Critical area

U

$$* = \sqrt{\frac{2\kappa}{\kappa+1}} R_M T_0 \qquad \longleftarrow \qquad T^* = T_0 \left(\frac{2}{\kappa+1}\right)$$

 $A^* = \frac{\pi}{4}d^2 \quad \checkmark$

Isenthalpic process (constant total enthalpy) $h_{0} = h^{*} + \frac{1}{2}u^{*2}$ ldeal gas $\kappa = \frac{c_{p}}{c_{v}} (\gamma \text{ in ISO 9300})$ $R_{M} = c_{p} - c_{v}$ Rearranging $T_{0} = T^{*} \left(1 + \frac{1}{2} \cdot \frac{\kappa R_{M}}{c_{p}}\right)$ $1 + \frac{1}{2} \cdot \frac{\kappa R_{M}}{c_{p}}$

$$= 1 + \frac{1}{2} \cdot \frac{c_p(c_p - c_v)}{c_v \cdot c_p}$$
$$= 1 + \frac{\kappa - 1}{2} = \frac{\kappa + 1}{2}$$

Mass flow rate $\dot{m}_{th,i} = C_i^* \cdot \frac{p_0}{\sqrt{R_M T_0}} \cdot \frac{\pi}{4} d^2$

How can we derive this equation?

1. Start with simple definition:

 $\dot{m}_{th,i} = \frac{\rho^* u^* A^*}{P}$

- 2. Assume:
 - Ideal gas
 - Reversible process
 - Adiabatic process
 - 1D flow

Critical area

Critical velocity

Critical density

Isentropic process (constant entropy)

 $A^* = \frac{\pi}{4}d^2 \quad \checkmark$

With critical temperature

 $T^* = T_0\left(\frac{2}{\kappa+1}\right)$

Critical area

Critical velocity

Critical density

Mass flow rate $\dot{m}_{th,i} = C_i^* \cdot \frac{p_0}{\sqrt{R_M T_0}} \cdot \frac{\pi}{4} d^2$

How can we derive this equation?

1. Start with simple definition:

 $\dot{m}_{th,i} = \frac{\rho^* u^* A^*}{P}$

- 2. Assume:
 - Ideal gas
 - Reversible process
 - Adiabatic process
 - 1D flow

 $A^* = \frac{\pi}{4}d^2 \quad \checkmark$

CFD Workshop - Part 3, 15 June 2023, Borås, SWE

3.a) Boundary conditions

Estimation of throat Reynolds number

Throat Reynolds number

 $Re_{nt,th,i} = \frac{4\dot{m}_{th,i}}{\pi d\mu_0}$

Ideal mass flow rate

$$\dot{m}_{th,i} = C_i^* \cdot \frac{\pi}{4} d^2 \cdot \frac{p_0}{\sqrt{\left(\frac{R}{M}\right)T_0}}$$

 $\Rightarrow Re_{nt,th,i} = \frac{C_i^* \cdot d \cdot p_0}{\prod \frac{RT_0}{R}} \approx 1.326 \cdot 10^6$

Let's set the boundary conditions in OpenFOAM

• Ideal critical flow factor
$$(\kappa = 1.4)$$

$$C_i^* = \sqrt{\kappa \cdot \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa+1}{\kappa-1}}} \approx 0.68473$$

Dynamic viscosity (REFPROP): $\mu_0(p_0, T_0) = 9.2823 \cdot 10^{-6} \text{ Pa} \cdot \text{s}$ Universal gas constant: $R = 8.3144626 \frac{\text{J}}{\text{molK}}$

Molar mass:

$$M = 0.002016 \frac{\text{kg}}{\text{mol}}$$

Pressure <i>p</i>				
dimensi	ons [1	1 -:	2000];	
interna	lField un	iform	200e+05;	
boundar {	yField			
inl	.et			
{	type p0 value		totalPressure; uniform 200e+05; uniform 200e+05;	
out	let			
{	type meanValue value		fixedMean; 100e+05; uniform 100e+05;	
top { }	type		zeroGradient;	
axi	.s			
(}	type		empty;	
fro	nt			
ز }	type		wedge;	
<u>bac</u> { }	type		wedge;	
}				

	Velocity <i>U</i>
dimensions	[0 1 -1 0 0 0 0];
internalField	uniform (0 0 0);
boundaryField	
i inlet	
{ type value }	<pre>pressureInletOutletVelocity \$internalField;</pre>
outlet	
type }	zeroGradient;
top	
{ type value }	fixedValue; // noSlip; uniform (0 0 0);
axis	
{ type }	empty;
front	
{ type }	wedge;
back	
i type }	wedge;
}	

Inlet:

- Total pressure
- Total temperature

Outlet:

• Static pressure

Wall:

- No-slip
- Adiabatic

Axis:

Rotation axis

Front and Back:

• Symmetry

Agenda (Part 1)

OpenFOAM folder structure

Pre-processing

1.	Geometry creation
2.	Mesh creation
3.	Numerical setup
	a) Boundary conditions
	b) Turbulence model

- C)
- d)

• The turbulence model is selected in the *turbulenceProperties* file

simulationType	banana; —	Banana?	—— ,Banana trick' output
RAS		\checkmark	Creating turbulence model
RASModel	kOmegaSST;		Selecting turbulence model type banana
turbulence	on;		
<pre>printCoeffs }</pre>	on;		> FOAM FATAL TO ERROR: (open+oam-2012) Unknown simulationType type banana
,			Valid simulationType types : 3(LES RAS laminar)

- The ,banana trick' provokes an error message to show all valid types
- > We select the RAS type

• The turbulence model is selected in the *turbulenceProperties* file

Reynolds-averaged simulation (RAS)

 $k-\omega$ Shear Stress Transport (SST) model

- Two-equation model for turbulent kinetic energy k and turbulent specific dissipation rate ω
- Eddy viscosity model based on Boussinesq's hypothesis
- Combines strenghts of k-ω model (inner region of boundary layer) and k-ε model (free stream)
- We solve for four additional quantities:
 - 1. Turbulent kinetic energy k
 - 2. Turbulent specific dissipation rate ω
 - 3. Turbulent viscosity v_t
 - 4. Turbulent thermal diffusivity α_t

- Solved in additional transport equations
- ——— Modeled and included in momentum equation
- ——— Modeled and included in energy equation

- How can we calculate the inlet value?
 - For isentropic turbulence, k_{in} can be estimated by:

$$k_{in} = \frac{3}{2} (Tu \cdot U_{\infty})^2 \approx 0.01215 \frac{\mathrm{m}^2}{\mathrm{s}^2}$$

• Estimated turbulence intensity:

Tu = 0.5 %

• Free stream velocity (based on preliminary calculations):

$$J_{\infty} \approx 18 \ \frac{\mathrm{m}}{\mathrm{s}}$$

ι

- Chosen wall function for k
 - Provides a wall constraint depending on the y^+ value

• How can we calculate the inlet value? $\circ \omega_{in}$ is calculated as:

$$\omega_{in} = \frac{\sqrt{k_{in}}}{C_{\mu}^{0.25} \cdot l} \approx 1800 \frac{1}{s}$$

• Turbulence length scale (fully developed pipe flow):

$$l = 0.038 \cdot d_{in}$$

Inlet diameter:

$$d_{in} = 3 \cdot d$$

• Model parameter:

$$C_{\mu} = 0.09$$

- Chosen wall function for ω
 - Provides a wall constraint depending on the y⁺ value

Turb.	kin. energy <i>k</i>	Turb. diss	. rate o <i>mega</i>
dimensions	[0 2 -2 0 0 0 0];	dimensions [0	0 -1 0 0 0 0];
<pre>internalField boundaryField { inlet { type value } outlet { type } }</pre>	uniform 0.01215; fixedValue; uniform 0.01215; zeroGradient;	<pre>internalField uni boundaryField { inlet { type value } outlet { type type } }</pre>	iform 1800.0; fixedValue; uniform 1800.0; zeroGradient;
top { type value }	kLowReWallFunction; \$internalField;	top { type value }	omegaWallFunction; \$internalField;
axis { type }	empty;	axis { type }	empty;
front { type }	wedge;	front { type }	wedge;
back { type }	wedge;	back { type }	wedge;
}		}	

Turb. kin. energy <i>k</i>	Turb. diss. rate omega		Turb. therm. diff. alphat
<pre>dimensions [0 2 -2 0 0 0 0]; internalField uniform 0.01215; boundaryField { inlet { type fixedValue; value uniform 0.01215; } outlet { type fixedValue; value uniform 0.01215; }</pre>	<pre>dimensions [0 0 -1 0 0 0 0]; internalField uniform 1800.0; boundaryField { inlet { type fixedValue; value uniform 1800.0; } outlet { type fixedValue; value uniform 1800.0; }</pre>		<pre>dimensions [1 -1 -1 0 0 0 0]; internalField uniform 0; boundaryField { inlet { type calculated; value uniform 0; } outlet { type calculated; value uniform 0; } </pre>
<pre>type ZeroGradIent; } top { type kLowReWallFunction; value \$internalField; }</pre>	<pre>type ZeroGradlent; } top { type omegaWallFunction; value \$internalField; }</pre>	 Chosen wall function for α_t Provides a wall constraint 	<pre>} top { type compressible::alphatWallFunction; value \$internalField; } axis { type empty; }</pre>
axis { type empty; } front { type wedge; }	axis { type empty; } front { type wedge; }	depending on the y ⁺ value	front { type wedge; } back {
} back { type wedge; } }	} back { type wedge; } }		<pre>cype weage; } </pre>

Turb.	Turb. kin. energy <i>k</i> Turb. diss. rate <i>omega</i>		Turb. viscosity <i>nut</i>		Turb. therm. diff. <i>alphat</i>		
dimensions internalField	[0 2 -2 0 0 0 0]; uniform 0.01215;	dimensions [00-1 internalField uniform	0 0 0 0]; 1800.0;	dimensions internalField	[0 2 -1 0 0 0 0]; uniform 0;	dimensions [1 internalField uni	-1 -1 0 0 0 0]; form 0;
<pre>boundaryField { inlet { type value } outlet { type } top { type value value value value top { type value } cop { type value } value value</pre>	<pre>fixedValue; uniform 0.01215; zeroGradient; kLowReWallFunction; \$internalField;</pre>	<pre>boundaryField { inlet { type value } outlet { type } top { type value } </pre>	<pre>fixedValue; uniform 1800.0; zeroGradient; omegaWallFunction; \$internalField;</pre>	<pre>boundaryField { inlet { type value } outlet { type value } top { type value value } </pre>	<pre>calculated; uniform 0; calculated; uniform 0; nutkWallFunction; uniform 0;</pre>	<pre>boundaryField { inlet { type value } outlet { type value } top { type value } </pre>	<pre>calculated; uniform 0; calculated; uniform 0; compressible::alphatWallFunction; \$internalField;</pre>
<pre>} axis { type } front { type } back { type } } }</pre>	empty; wedge; wedge;	<pre>} axis { type } front { type } back { type } } }</pre>	empty; wedge; wedge;	<pre>} axis { type } front { type } back { type } } </pre>	empty; wedge; wedge;	axis { type } front { type } back { type } } }	empty; wedge; wedge;

Agenda (Part 1)

OpenFOAM folder structure

Pre-processing

1.	Ge	ometry creation
2.	Me	sh creation
3.	Nu	merical setup
	a)	Boundary conditions
	b)	Turbulence model
	c)	Real gas model
	d)	Numerical settings

The real gas model for hydrogen is selected in the *thermophysicalProperties* file Real gas settings

3.c) Real gas model

Ideal gas settings

• can be used for low pressure cases

Agenda (Part 1)

1.

2.

3.

a)

b)

C)

d)

OpenFOAM folder structure

Pre-processing

CFD Workshop - Part 3, 15 June 2023, Borås, SWE	

•

```
3.d) Numerical settings
```



```
application
              sonicFoam;
startFrom
              startTime;
startTime
              0;
              endTime;
stopAt
              10e-04;
endTime
              0.25e-8;
deltaT
writeControl
              adjustableRunTime;
                                        ۲
              5e-05;
writeInterval
                                                \cap
purgeWrite
              0;
writeFormat
              ascii;
writePrecision 6;
writeCompression off;
timeFormat
              general;
timePrecision
             6;
runTimeModifiable true;
adjustTimeStep
                     no;
                                           This value can be used as a starting point
                                        •
                     0.8;
maxCo
                                        > Chosen time step (0.25 \cdot 10^{-8} \text{ s}) is smaller due
maxDeltaT
                     1e-03;
```

Compressible flow solver

Start and end time

Time step of the simulation

to stability reasons

How can we estimate an appropriate magnitude for the time step Δt ? Start with CFL condition in the axial direction at the nozzle throat:

$$CFL = u^* \cdot \frac{\Delta t}{\Delta z} \le 1$$

 $\rightarrow \Delta t \le \frac{\Delta z}{u^*} \approx 1.25 \cdot 10^{-8} \text{ s}$

Velocity at nozzle throat

MetHyInfra

$$u^* = \sqrt{\frac{2\kappa}{\kappa+1}} R_M T_0 \approx 1200 \frac{\mathrm{m}}{\mathrm{s}}$$

Cell size in the axial direction

$$\Delta z = \frac{l_z}{cz} = \frac{9 \text{ mm}}{600} = 1.5 \cdot 10^{-5} \text{ m}$$

• In the controlDict file, the main case controls are set (e.g. time and write settings, functions objects, etc.)

3.d) Numerical settings

• Functions objects are specified under *functions* (included in *controlDict* file)

Keywords:

General:

phi:

- Flux across cell faces
- Gauss: Gaussian integration

Time scheme:

Euler: First order, implicit, bounded

Discretization schemes:

- Inear: Second order, unbounded
- limitedLinear: First / second order, unbounded
- upwind: First order, bounded

Correction scheme:

corrected: Second order, non-orthogonality

Remember:

- First order: bounded / stable but diffusive
- Second order: accurate but might oscillate
- Compromise between accuracy and stability

nNonOrthogonal

Correctors

nCorrectors

nOuterCorrectors

In the *fvSolution* file, solvers, tolerances, and algorithms are set ٠

Run simulation

Option 1

Serial run:

 Start simulation and write a log file sonicFoam > log &

Simulation running

Let's have a coffee break until the simulation is completed

Option 2

Parallel run:

- 1. Decompose flow domain into subdomains decomposePar &
- Start parallel simulation and write log file mpirun -np 4 sonicFoam -parallel > log &
- 3. Reconstruct flow domain (after simulation) reconstructPar &

decomposeParDict

CFD Workshop - Part 3, 15 June 2023, Borås, SWE

Five-minute break

Agenda (Part 2)

OpenFOAM folder structure

Post-processing

4.	Log file
5.	Convergence
	a) Residuals
	b) Mass flow rate
6.	Discharge coefficient
7.	Flow field
	a) Surface plots
	b) Line plots

Agenda (Part 2)

OpenFOAM folder structure

Post-processing 0.001 Mach number MaRealH2 density 🗋 rho Log file 4. logs / 5. Convergence 🗋 e_1 internal energy Residuals a) 0.001 🗋 k_0 turbulent kinetic energy Mass flow rate b) omega_0 turbulent specific dissipation rate logs 🗋 p_1 postProcessing pressure Discharge coefficient 6. 🗋 Uy_1 radial velocity log Flow field 🗋 Uz_1 axial velocity 7. Surface plots a) postProcessing / massFlowRate / Line plots b) 0 / surfaceFieldValue.dat inlet mass flow rate

CFD Workshop - Part 3, 15 June 2023, Borås, SWE

4. Log file

• Let's have a look at the log file: **Command:** *vim log*

Time step		Time = 0.001
Courant number		Courant Number mean: 0.0731337 max: 0.596613 diagonal: Solving for rho, Initial residual = 0, Final residual = 0, No Iterations 0
1st PIMPLE outer loop		PIMPLE: iteration 1 smoothSolver: Solving for Ux, Initial residual = 0.00512428, Final residual = 5.13094e-08, No Iterations 3 smoothSolver: Solving for Uy, Initial residual = 0.00045734, Final residual = 1.74349e-08, No Iterations 4 smoothSolver: Solving for Uz, Initial residual = 4.1337e-05, Final residual = 2.2945e-08, No Iterations 3 smoothSolver: Solving for e, Initial residual = 9.59416e-05, Final residual = 6.25853e-08, No Iterations 3 smoothSolver: Solving for p, Initial residual = 5.04294e-05, Final residual = 4.26458e-09, No Iterations 5 diagonal: Solving for rho, Initial residual = 0, Final residual = 0, No Iterations 0 time step continuity errors : sum local = 3.56692e-09, global = 3.8627e-10, cumulative = -9.03055e-05
2nd PIMPLE outer loop		<pre>smoothSolver: Solving for Ux, Initial residual = 2.36959e-05, Final residual = 1.1483e-08, No Iterations 2 smoothSolver: Solving for Uy, Initial residual = 3.60669e-05, Final residual = 3.54568e-08, No Iterations 2 smoothSolver: Solving for Uz, Initial residual = 2.14832e-06, Final residual = 4.22986e-08, No Iterations 1 smoothSolver: Solving for e, Initial residual = 2.73181e-05, Final residual = 2.02109e-08, No Iterations 2 smoothSolver: Solving for p, Initial residual = 2.30766e-05, Final residual = 5.29608e-09, No Iterations 3 diagonal: Solving for rho, Initial residual = 0, Final residual = 0, No Iterations 0 time step continuity errors : sum local = 4.42968e-09, global = 1.64049e-10, cumulative = -9.03053e-05 smoothSolver: Solving for omega, Initial residual = 2.85294e-05, Final residual = 1.13305e-09, No Iterations 3</pre>
Run time	† 1	ExecutionTime = 60469.4 s ClockTime = 61141 s $\approx 17 h$
Writing function objects	→	<pre>functionObjects::MachNoRealH2 MachNumberRealH2 writing field: MaRealH2 writeObjects rhofunc write: writing object rho End</pre>
Run completed	\rightarrow	Finalising parallel run

Agenda (Part 2)

OpenFOAM folder structure

Post-processing

- 4. Log file
 5. Convergence
 a) Residuals
 b) Maga flow rate
 - b) Mass flow rate
- 6. Discharge coefficient
- 7. Flow field
 - a) Surface plots
 - b) Line plots

CFD Workshop - Part 3, 15 June 2023, Borås, SWE

0.0000

0.0002

0.0004

Time / s

0.0006

0.0008

 10^{0}

 10^{-1}

 10^{-2}

 $\frac{10^{-3}}{10^{-4}}$

10⁻⁵

 10^{-6}

 10^{-7}

• Let's check the convergence of the simulation

- First, we extract the residual data from the log file: **Command:** foamLog log &
- This generates a */logs* folder

5.a) Residuals

- Let's plot the residuals from the output data
- Residuals quicky drop and slightly oscillate around a constant value

0.0010

Agenda (Part 2)

OpenFOAM folder structure

Post-processing

- 4. Log file
 5. Convergence
 a) Residuals
 b) Mass flow rate
- 6. Discharge coefficient
- 7. Flow field
 - a) Surface plots
 - b) Line plots

5.b) Mass flow rate

- Let's see how the mass flow rate is establishing
- > We monitored the mass flow rate at the inlet

Mean value

$$\dot{m}_{CFD} \approx 0.00938793 \frac{\text{kg}}{\text{s}}$$

➤ Mass flow rate only varies within 0.015 % margin

Agenda (Part 2)

OpenFOAM folder structure

Post-processing

- 4. Log file
 5. Convergence

 a) Residuals
 b) Mass flow rate

 6. Discharge coefficient
- 7. Flow field
 - a) Surface plots
 - b) Line plots

6. Discharge coefficient

• Let's calculate the discharge coefficient

Agenda (Part 2)

OpenFOAM folder structure

Post-processing

4.	Log file
5.	Convergence
	a) Residuals
	b) Mass flow rate
6.	Discharge coefficient
7.	Flow field
	a) Surface plots
	b) Line plots

7.a) Surface plots

Mach number function for real gas hydrogen

• We introduced a specific function for the Mach number for our real gas model for hydrogen

MachNumbe	rRealH2	
t 1 e }	ype ibs xxecuteControl riteControl	<pre>MachNoRealH2; ("libfieldmyFunctionObjects.so"); timeStep; writeTime;</pre>

- > Why is this necessary?
- In OpenFOAM (OF), the Mach number function is defined as follows:

$$M_{OF} = \frac{|u|}{\sqrt{\kappa_{ideal} \frac{p}{\rho}}} \qquad \qquad \kappa_{ideal} = \frac{c_p}{c_v}$$

• Here, the ideal isentropic exponent is used

• For a real gas, the isentropic exponent is defined as follows:

$$\kappa_{real} = \frac{c_p}{c_v} \left(\frac{\partial p}{\partial \rho}\right)_T \frac{\rho}{p}$$

Our Mach number function directly uses the speed of sound correlation a_{real}:

Let's see how to create surface plots like this

7.a) Surface plots

3. Calculator Variable 1. Surface Time step **ParaView** to visualize the flow field III ParaView 5.9.1 1. Surface plots Surface File Edit View Sources Filters Extractors Tools Catalyst Macros Help \triangleright S 💌 19 🤤 max is 19 Ð 5 Time: 0.001 2. Contour plots 🔀 🧩 🔍 🚧 🚉 🐈 🖓 MaRealH2 Surface ©● ₩₩₩ ©:#: 6 6 r. * ₽ {...} ALC: NO Contour By MaRealH2 Compute Normals 2. Contour Compute Gradients Compute Scalars Output Points Same as input MaRealH2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Precision Generate Triangles Isosurfaces Value Range: [0, 2.0309] ٠ 1 1 -3. Calculated variables *** 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1 1.11 1.12 Compressibility factor ZResult Array Name Z p/(rho*T*4124.237)

MetHylnfra

7.a) Surface plots

Numerical Schlieren

Gradient of Unstructured DataSet filter

1. Set density gradient

Scalar Array	• rho	
✓ Compute Gradient		
Result Array Name	Gradients of rho	

2. Apply X Ray colormap

3. Adjust Min. and Max. values

Gradients of rho Magnitude 1000. 5000 10000 15000 20000 25000 30000.

Experimental Schlieren (for qualitative comparison)

Source: S. Matsuo et al., "*Effects of Supersonic Nozzle Geometry on Characteristics of Shock Wave Structure*", Open Journal of Fluid Dynamics, Vol. 2 No. 4A, 2012.

Agenda (Part 2)

OpenFOAM folder structure

Post-processing

4.	Log file
5.	Convergence
	a) Residuals
	b) Mass flow rate
6.	Discharge coefficient
7.	Flow field
	a) Surface plots
	b) Line plots

7.b) Line plots

Plot velocity over nozzle throat height

Plot Over Line filter

1. Define the line location

Lengt ✓ Sh	h: <i>0.00052</i> ow Line		
Point1	0	0	0.0008
Point2	0	0.00052	0.0008

2. Select the velocity

3. Save line data as text file

Thank you!

This project (20IND11 MetHyInfra) has received funding from the EMPIR programme cofinanced by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

research and innovation programme and the EMPIR Participating States

Sebastian Weiss

Working Group 8.41 "Modelling and Simulation" and Working Group 1.45 "Hydrogen Quantity Metering" Physikalisch-Technische Bundesanstalt (PTB) Berlin, Germany

sebastian.weiss@ptb.de