

EMPIR CALL 2020

Metrology infrastructure for high-pressure gas and liquified hydrogen flows

Dimensional calibration of CFVN

20IND11 MetHyInfra M27 SAB meeting, June 2023, Borås

Authors: Marc de Huu (METAS)

What is a sonic nozzle?

"Dry" Calibration

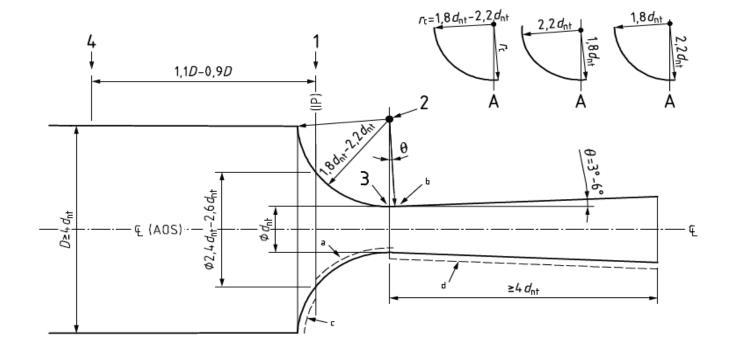
"Wet" Calibration

Using ISO 9300 Cd Model

or

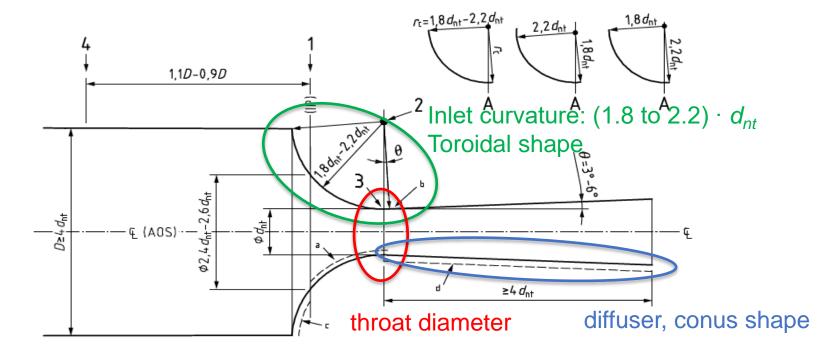
From 1st principles e.g. CFD

Flow calibration against a reference


Requires dimensional characterisation

The requirements vary for each calibration approach. Regardless, nozzles are usually based on the ISO 9300 shape

Dimensional calibration


• Ensure nozzle geometry is within tolerances of ISO 9300

Dimensional calibration

• Ensure nozzle geometry is within tolerances of ISO 9300

Coordinate measuring machine (CMM)

U (k=2) = 50 nm

Measure geometry by sensing discrete points on the surface of the object with a probe

Source: NIST

μ-CMM characteristic properties

Measuring volume: 80 mm x 80 mm x 40 mm

Position measurement: 3-axis Laserinterferometer, no Abbe offset

Reference system: Zerodur cube corner with mirrors

Stage: Vacuum air bearings

Frame: Aluminium metrology frame

Control: METAS LabView controller

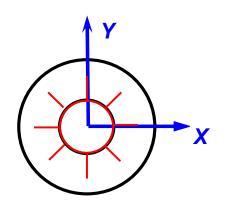
3D track control

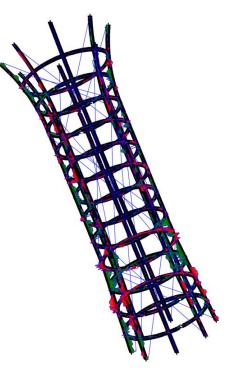
Closed loop freeform scanning

High level SW QUINDOS, Leitz protocol

Operating modes: Point probing

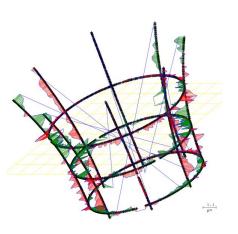
Probing repeatability (1s): 5 nm, single point


Source: METAS

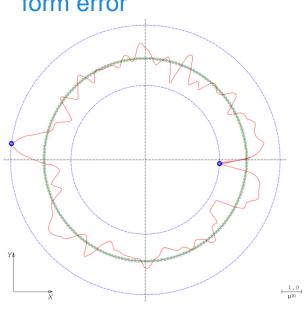

Measurement procedure (example)

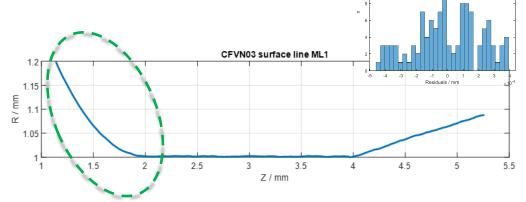
- Measure shape of the nozzle in the axial direction
- Measure throat diameter
- R1

- 1. 8 x 45° (8 surface lines), or more
- 2. Around 200 points per surface line
- 3. Locate the throat position
- 4. At throat position, measure circle with at least 120 points

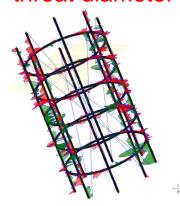


 $\frac{6.0}{\mu m}$

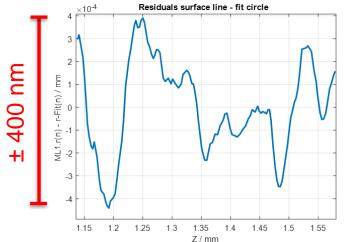

Results from CMM



Inlet curvature

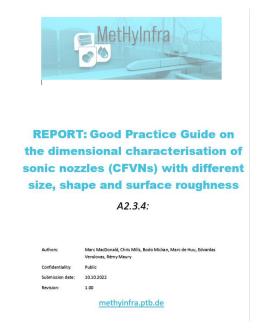


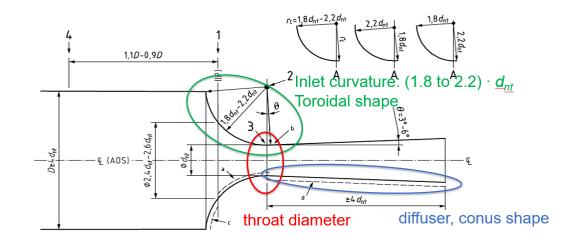
form error



throat diameter

Diameter in mm


Durchm.	:	2.003282	Form:	0.002958
X-Koord.	:	0.000151	Toleranz :	0.000100
Y-Koord.	:	-0.000126	Ueberh:	100
Z-Koord.	:	-2.667187	Punkte:	616



Summary

- Dimensional calibration: verification of form and dimensions
- Inlet curvature
- throat diameter
- diffuser angle

- Tolerances are very challenging for small nozzles
- CMM measurements are challenging for small nozzles $(d_{nt} \leq 2mm)$
- Outline of procedure for CMM measurements
- Personalised analysis of CMM data also possible
- Uncertainty (k=2) on throat diameter with state of the art CMM and accurately machined nozzles: (1 to 3) µm

Internal

external

BOCHUM

MECAS ESI s.r.o.

Ingenieurbüro T. Steuer its-tech.de

This project (20IND11 MetHyInfra) has received funding from the EMPIR programme cofinanced by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

